

Desarrollos y aplicaciones de cálculo CFD para análisis y optimización de sistemas de combustión en motores

II Jornadas Iberoamericanas de Motores Térmicos y Lubricantes 29-31 Agosto, 2018 Santa Fe, Argentina

José M. Pastor, Ph.D.

CONTENTS

Background and approach

- Tools and development
- Applications

Motivation

Energy conversion by combustion processes

Today about 80% of total primary energy supply (TPES) from fossil fuels

➢In 2035 TPES increases by 7%-29% with about 70% fossil fuels

Need for efficient combustion systems

➤ICEs are main power source in transportation sector

Increasingly stringent pollutant regulation for passenger cars and trucks

Demand on new low-consumption & pollutants aircraft engines

Design of combustion devices is challenging task

Complex multi-physics and chemical process

- Development by means of experiments (empirical approach)
- Support design process with simulation tools

Numerical models to improve understanding

Gaining attention in the latest decades

CFD of combustion in IC engines still a challenge:

Complexity of the physical and chemical fundamental processes in a highly transient environment

MTL 2018

APPROACH

Modelling steps for RICEs CFD simulations

CONTENTS

Background and approach

Tools and development

Applications

CFD of multiphase reacting flows

State-of-the-art and research directions

	SPRAY	COMBUSTION	TURBULENCE
CONVENTIONAL	LAGRANGIAN (DDM)	SIMPLIFIED KINETICS + TCI	RANS
ADVANCED	EULERIAN +LAGRANGIAN	DETAILED KINETICS + TCI	RANS → LES

Engine Combustion Network (ECN)

Necessary dialogue between research efforts

Experiments

Calculations

Diesel spray combustion, a highly transient process LoL

- Inert phase
 - ➤Tip penetration (S)
 - Liquid stabilization (LL)
- Auto-ignition and diffusion flame
 - ➤Tip penetration (S)
 - ➤Ignition delay (t_{SoC})
 - Lift-off length (LOL)
 - Flame stabilization (FL)

CFD of multiphase reacting flows

State-of-the-art and research directions

	SPRAY	COMBUSTION	TURBULENCE
CONVENTIONAL	LAGRANGIAN (DDM)	SIMPLIFIED KINETICS + TCI	RANS
ADVANCED	EULERIAN (+LAGRANGIAN)	DETAILED KINETICS + TCI	$RANS \to LES$

Engine sprays comprises wide range of two-phase flow regimes:

Standard approach for engine spray CFD simulations

Two-fluid lagrangian liquid /eulerian gas framework

>Phase coupling by source/sink terms between gas phase and spray eqs.

Example of application

- Experimental (raw image)

- CFD model

Benajes et al., FEV Diesel Powertrains 3.0 (2017)

Model calibration

- Target: error < 5% for all testing points

Fair accuracy after calibration using exp. data

Example: break-up model constants (time and size) depend on P_{ini}.

JNIVERSITAT

POLITÈCNICA de valència

Fair accuracy after calibration using exp. data

Example: break-up model constants (time and size) depend on P_{ini}.

			Size cnst KH	Time cnst KH	Size cnstR	T Time cnst RT
	p _i [bar]	p _b [bar]	B ₀	B ₁	cnst3rt	rtcnst2b
	300	30	0.80	5	0.5	1.0
	300	50	0.80 n	5	0.5	
	300	70	0.80	5	0.5	1.5
	1000	30	1.340	11.4	0.5	1.0
	1000	50	1.34	11.4	0.5	
	1000	70	1.34 ci	11.4	0.5	1.5
	1800	30	2.00	18.6	0.5	1.0
	1800	50	2.00	18.6	0.5 8	ing
	1800	70	2.00	18.6	0.5	1.5
	2500	30	5.00	25	0.5	1.0
	2500	50	5.00	25	0.5	
Benajes et Powertrains	2500	70	5.00 V	25	0.5	1.5

KH model

$$r_c = B_0 \cdot \Lambda_{KH}$$

$$\tau_{KH} = \frac{3.726 \cdot B_1 \cdot r_p}{\Lambda_{KH} \cdot \Omega_{KH}}$$

29/08/2018

Near-nozzle flow:

JNIVERSITAT

POLITÈCNICA De València

Complex liquid-gas interface

Modeling (and experiments) should move away from the droplet concept within the spray dense core

>DDM not well suited for this region

>ICM unfeasible ($\uparrow\uparrow$ Re & We)

Diffuse-interface eulerian methods arises as an interesting option

ECN – SprayA near-nozzle (https://ecn.sandia.gov/)

Liquid jet atomization under Diesel-like conditions, simulated on 400 million cells https://ctflab.mae.cornell.edu/research.html

Eulerian diffuse-interface

approach (Vallet & Borghi, AAS (2001))

Flow scales separation at *\\ Re We*

Liquid dispersion independent from atomization processes occurring at smaller scales

Mean velocity field

Liquid/gas mixture considered as a single velocity pseudo-fluid

Liquid mass dispersion

Modeled as turbulent mixing of variable density fluid by means of liquid mass fraction (Y) transport eq.

Atomization process

>Mean liquid geometry modeled by surface area of the liquid-gas interphase (Σ)

Lebas et al., IJMF (2009)

29/08/2018

Near-field

Improved near-nozzle liquid dispersion compared to DDM

Desantes et al., AAS 26 (2016):713-737

INIVERSITAT

POLITÈCNICA DE VALÈNCIA

García-Oliver et al., AAS 23 (2013):71-95

29/08/2018

- Improved predictions compared to calibrated DDM
 - Liquid and vapor tip penetration

Improved predictions compared to calibrated DDM Mixing field

JNIVERSITAT

POLITÈCNICA DE VALÈNCIA

Proper trends on parametric variations w/o additional calibration, unlike DDM

CFD of multiphase reacting flows

State-of-the-art and research directions

	SPRAY	COMBUSTION	TURBULENCE
CONVENTIONAL	LAGRANGIAN (DDM)	SIMPLIFIED KINETICS + TCI	RANS
ADVANCED	EULERIAN (+LAGRANGIAN)	DETAILED KINETICS + TCI	$RANS \to LES$

CFD of reacting flows

Combustion modelling

CFD of reacting flows

Chemical Kinetics

➢ From simple (1 reaction) to detailed (1000's of reactions) mechs.

TCI approaches
Direct integration ('no model', delta-PDF,...)

Phenomenological (CTC,PaSR,ECFM, ...)

Scale separation + pPDF (RIF, UFPV, CMC,...)

≻Transported PDFs,..

Combustion modelling

ECN-Spray A application

Set-up:

POLITECNICA

- > RANS: std k- ϵ + C_{1 ϵ}=1.55
 - ~1 Mcells
 - Min cell size 125 μm
- LES: dynamic Structure
 - ~4 Mcells
 - Min cell size 62.5 μ m

DDM spray:
KH + RT atomization & break-up

Narayanaswamy et al, Comb.Flame 2014

- 255 species / 2289 reactions

TCI impact

SAGE (Senecal et al., 2003, SAE)

Detailed Chemical Kinetics Solver

Direct integration ('no model')

 UFPV (Unsteady Flamelet Progress Variable)

Unsteady Flamelet Model (USFM)

(Naud et al, CAF, 2014)

➤Tabulated chemistry → Large chemical mechanisms

Detailed Flamelet calculations (DF)

(Payri et al., AppMathModel, 2017)

TCI impact

- Both models are able to capture trends
- Overall good agreement for both models in terms of ID
 - >Yao mech. calibrated for reacting spray !!
- Better agreement in terms of LOL using UFPV

29/08/2018

TCI impact

UNIVERSITAT

POLITÈCNICA DE VALÈNCIA

Heat Release

> Difference during premixed phase, closer during diffusion due to similar flame structure.

$\textbf{RANS} \rightarrow \textbf{LES}$

Desantes et al., Applied Thermal Engineering 117 (2017): 50–64

29/08/2018

MTL 2018

$\textbf{RANS} \rightarrow \textbf{LES}$

 Spray mixing assessment
LES provides good averaged values and lower model constant impact on fluctuations

Desantes et al., ICCFD10, 2018

MTL 2018

$\textbf{RANS} \rightarrow \textbf{LES}$

29/08/2018

$\mathsf{RANS} \to \mathsf{LES}$

JNIVERSITAT

POLITÈCNICA De València

Global combustions indicators

Both ID and LOL predictions are affected by turbulence modelling approach

 Improved ID for LES using detailed mechanism, but LOL underprediction though trends are captured.

MTL 2018

Combustion modelling

$\mathsf{RANS} \to \mathsf{LES}$

Flame structure

Both RANS and LES simulations produce meaningful results

LES is able to capture transient phenomena such as detached ignition kernels and LOL stabilization, observed in experiments.

MTL 2018

CONTENTS

- Background and approach
- Tools and development
- Applications

APPLICATIONS

Framework

Convention Diesel Combustion

➢Widely used due to high efficiency and reliability.

Difficult to simultaneously reduce fuel consumption and emissions (NOx-Soot trade-off) without complex after-treatment.

Alternative CI strategies (PPC,HCCI,...) still limited application due to ignition control issues.

APPLICATIONS

Framework

29/08/2018

MTL 2018

Micro-orifice nozzles and high injection pressure

Objective:

Evaluating the potential of integrating the micro-orifice nozzle technology together with a high injection pressure system for passenger car diesel engine applications

Tools & Methodology

CFD software: CONVERGE v2.3

UNIVERSITAT

POLITÈCNICA DE VALÈNCIA

CONVERGENT SCIENCE CFD SOFTWARE

Model approach: **DDM** Injection model: Blob Atomization model: **KH-RT**

Fuel: Diesel surrogate

- N-C10H22 (71%)
- C11H22O2-MD (23%)
- A2CH3 (6%)

Other submodels

- Drag: dynamic drop
- Evaporation: Frosling
- Collision model: O'Rourke

Benajes et al.,FEV Diesel Powertrains 3.0 (2017)

29/08/2018

Micro-oriffices & high inj. pressure

Engine model calibration & assessment

Part- and full-load

UNIVERSITAT

POLITÈCNICA DE VALÈNCIA

Benajes et al.,FEV Diesel Powertrains 3.0 (2017)

29/08/2018

Engine model calibration & assessment

Part- and full-load

29/08/2018

MTL 2018

Model application

Part-load

UNIVERSITAT

POLITÈCNICA DE VALÈNCIA

- Enhance the mixing process
 - Positive impact on combustion duration (ISFC) and soot emission
 - Negative impact on NOx

Promote the premixed combustion stage

Negative impact on combustion noise particularly at low loads & low speeds

Benajes et al., FEV Diesel Powertrains 3.0 (2017)

Model application

Part-load

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

29/08/2018

MTL 2018

Model application

Full-load

JNIVERSITAT

POLITÈCNICA DE VALÈNCIA

> Enhance the mixing process, but the impact is slightly noticeable in HRR

- Positive impact on combustion duration (ISFC) and soot emission
- Negative impact on NOx
- Noise not critical

If Nozzle C is evaluated limiting the injection pressure

 All benefits are LOST and this configuration is clearly the worst

Benajes et al.,FEV Diesel Powertrains 3.0 (2017)

APPLICATIONS

Framework

MTL 2018

CDC system optimization

Objective:

Defining the combustion chamber geometry & key engine settings focusing on engine efficiency while keeping emission levels for a medium-duty diesel engine

Tools

STARCD CFD code

- ✓ Combustion model → ECFM-3z
- ✓ Spray atomization and breakup → Huh-Gosman and Reitz-Diwakar
- ✓ Turbulence model \rightarrow RNG k- ϵ

MTL 2018

Methodology

Based on Design Of Experiments:

Benajes et al., ECM 110 (2016) 212-229

CFD model set-up

Overall fair agreement wit exp.

NOx overprediction at high load/speed, but the quality of CFD was considered suitable

Case		ISFC	IMEP	NOx	Soot
		[g/kWh]	[bar]	[g/h]	[FSN]
1200 mm	Exp	201.5	6.5	28.6	0.29
1200 rpm	CFD	203.1	6.2	27.6	0.24
1600 rpm	Exp	188.8	17.7	213.3	0.078
1600 ipin	CFD	186.3	18.3	218.6	0.08
1900 mm	Exp	194.3	24.7	249.16	0.4
roou ipin	CFD	193.7	24.96	368.4	0.42

DoE - RSM

DoE definition

Benajes et al., ECM 110 (2016) 212-229

29/08/2018

Input factor effect analysis

DoE - RSM: Optimum selection and validation

2 optimum configuration: min ISFC (o1) and min pollutants (o2)

➢CFD validation of RSM results

With RSM method it is easy to analyze trade-off between parameters

More inputs (settings) → more potential of the combustion system → ISFC-NO_X trade-off still present

Geometry, air management and injection settings are not able to break the trade-offs

Experimental assessment

SCE test using machined pistons according CFD results

51

APPLICATIONS

Framework

MTL 2018

Alternative fuel combustion system

- Background: Main characteristics of the DME fuel
 - Easy to produce from different primary sources
 - Similar combustion properties than diesel fuel
 - Slightly higher cetane number (60), shorter ignition delay
 - Lower heating value (28.8 KJ/kg) but also lower stoichiometric air/fuel ratio (9)
 - >Its non-sooting nature opens the possibility of optimization paths
 - > It is gaseous in ambient conditions, liquefied by compressing it at 6 bar

Objective

➢ Evaluating in detail the potential of the CDC process using a synthetic fuel with better suited properties than the conventional diesel fuel → Keeping ALL the benefits of the CDC improving NOx/soot emissions and efficiency

Methodology & Tools

■Unexplored behavior requires complete combustion redefinition (hardware + settings)→Evolutionary methods better suited for large number of parameter optimization

Genetic Algorithm

Mimics the mechanism of natural selection and evolution: Selection, Crossover and Mutation

Very effective with large number of inputs and also when the problem includes non-linear trends

Difficult to avoid local optimums

•GA selection \rightarrow DK-GA (developed at the UWM)

- Outperformed the other evaluated well-known GA
- It finds the global optimum
- It finds it after reasonable number of evaluations

Methodology & Tools

Multicylinder engine

- ✓ 6-cyl TC HDDI engine 15 liters (2.5 l/cyl)
- ✓ SOI sweep for validation at the target OC

Key characteri	stics	Operating cond	dition
Bore [mm]	137	Speed [rpm]	1800
Stroke [mm]	171	Fuel mass [Kg/s]	2.2e-2
Comp. Ratio [-]	17:1	IMEP [bar]	18
Injection system	CR	EGR [%]	25
Nozzle holes [-]	6	Intake temp. [K]	333
Hole diam. [mm]	0.214	Boost press. [bar]	3.1
Spray angle [deg]	130	MSN [-]	0.7

CFD platform \rightarrow KIVA 3v

- ✓ Turbulence model → RNG k- ϵ
- ✓ Spray model → DDM approach
 - Improved grid dependency: Gas-Jet model
 - Atomization & break-up: KH-RT
 - Improved O'Rourke collision model
- ✓ Combustion model → DIC (SpeedCHEM)
- ✓ DME + NOx chem. model \rightarrow 29 spec. + 66 reac.
- ✓ Soot model → *Not required*
- ✓ Cores per simulation → 1 core
- ✓ Number of cells → ~35000 \int ~20 REMARK: Around 25K sim/optimization

Benajes et al., SAE WCX 2018

Alternative fuel combustion system Politecnica

Results and discussion

Optimization parameters and setup

	G1-G4	G5	G6-G15	Dnoz	NA	SOI	IP	EGR	PIVC	swirl
	[-]			[μm]	[aeg]	[cad]	[par]	[%]	[par]	[-]
Min.	0.01	-0.99	0.01	200	45	-35	500	2	2.5	0.1
Max	0.99	0.99	0.99	350	90	5	2600	62	4	3
	Geometry			Injection			Air ı	managem	ent	

Input parameters

Restrictions

NOx	PP	maxPRR
[g/kWh]	[bar]	[bar/deg]
0.268	200	15

Geometry parameters 40 30 p5t1 Bowl Depth [mm] 20 p5v p1t2 p3v

p2t2

60

80

p3h

40 Bowl Width [mm]

KEY ASPECTS

- \checkmark Extended number of input parameters \rightarrow All key inputs are included \rightarrow 15 geometry parameters
- ✓ Wide ranges for the selected input parameters
- \checkmark Objective function is optimized \rightarrow high PP, NOx or maxPRR penalizes the objective function output

enaies et al., SAE WCX 2018

p1v

-10

0

p2t1

p2h

20

Results and discussion

Optimum performance description

- ✓ Geometry changed significantly (keeping CR) → more reentrant, narrower and less depth piston
- Process converged to an optimum with a 3.3% NIE improvement reducing drastically NOx
- \checkmark All restrictions are satisfied by the optimum

Optimum vs baseline geometry

Optimum settings

	Dnoz	NA	SOI	IP	EGR	PIVC	swirl
	[µm]	[deg]	[cad]	[bar]	[%]	[bar]	[-]
Baseline DME	300	65	-13	1800	25	3.1	0.7
Opt. Case	300	86.7	-8.19	2500	40	3.25	2.82

Optimum vs baseline outputs

	NIE	maxPRR	NOx	PP
	[%]	[bar/deg]	[g/kWh]	[bar]
Baseline DME	42.8	6.1	2.81	193.9
Opt. Case	46.1	6.6	0.26	199.4

Alternative fuel combustion system

Results and discussion

Optimum performance description

VNIVERSITAT Alternative fuel combustion system DE VALÈNCIA

Results and discussion

Optimum performance description

pressure & better suited internal aerodynamics

Benajes et al., SAE WCX 2018

Alternative fuel combustion system

37.1

15.8

46.2

Add SOI

-8.19

2.82

40

3.25

300

2500

86.7

Optimum

Results and discussion

Optimization path analysis

CONTENTS

- Background and approach
- Tools and development
- Applications

ACKNOWLEDGEMENTS

CFD combustion group members and collaborations

> Prof. JM García-Oliver and Prof. R. Novella

J. Gomez-Soriano, E.J. Perez, A. Hernández-Lopez, L. Pachano, …

➢Dr. A. Pandal & Dr. J.F. Winklinger (former CMT PhD Students)

CMT combustion research manager Prof. J. Benajes

Gracias por su atención !